
Introduction Basic principles kkapture piece by piece

.kkapture: Guided tour

Fabian ‘ryg’ Giesen

Farbrausch

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Outline

Introduction

Basic principles
The main idea
Intercepting API calls

kkapture piece by piece
Video encoders
Video APIs
Audio

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Overview

I Learn what kkapture can do, how it does it. . .
I . . . and how to teach it new tricks if you need/want to.
I How to make demos kkapture-friendly?
I Get you to fix kkapture yourself if it barfs on your demo.

I But send back patches, please :)
I Plus some anecdotes. . .

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

But first. . .

Let’s debunk some common misconceptions:
I kkapture is not D3D only.
I kkapture is not a screengrabber.
I It doesn’t “hack” your system, either.

I Everything kkapture does is local to target app.
I You can let kkapture run in the background.

I But: Consumes lots of CPU power and I/O bandwidth.
I Also, a lot of demos stop running when they lose focus.

I Directly encoding to XVid/H.264/etc. from kkapture is a bad idea
I Use fast, lossless codec for kkapturing. (HuffYUV, LagArith etc.)
I Transcode to actual target format later. (VirtualDub!)

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

The main idea

The main idea
I All graphics APIs (that we’re interested in) are double-buffered:

while (!done) {
updateStuff();
renderStuff(); // to (invisible) back buffer
swapBuffers(); // make back buffer visible

}

I Intercept that one call and we know when to grab the image.
I Different function for different APIs, so need to handle them

separately.
I The twist: Make time “stand still” between successive calls.

I Simulate “infinitely fast” CPU that always waits for graphics to finish
rendering.

I Also pretend that rendering takes a fixed time.
I Why?

I Rendering videos is expensive, especially at high resolution and
framerate.

I Removing “real-time” from the equation makes everything easier.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

The main idea

The main idea
I All graphics APIs (that we’re interested in) are double-buffered:

while (!done) {
updateStuff();
renderStuff(); // to (invisible) back buffer
swapBuffers(); // make back buffer visible

}
I Intercept that one call and we know when to grab the image.
I Different function for different APIs, so need to handle them

separately.
I The twist: Make time “stand still” between successive calls.

I Simulate “infinitely fast” CPU that always waits for graphics to finish
rendering.

I Also pretend that rendering takes a fixed time.
I Why?

I Rendering videos is expensive, especially at high resolution and
framerate.

I Removing “real-time” from the equation makes everything easier.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

The main idea

How to build a time machine

I Need to control time as visible to app.
I Tons of possible time sources:

I Direct: GetTickCount(), QueryPerformanceCounter() etc.
I Indirect: Sleep(), WaitForSingleObject() etc.
I Event-based: timeSetEvent(), SetTimer()
I Sound: Current play position (emulate sound card!)
I CPU: RDTSC (hard to do; kkapture ignores this)

I Intercept them all, make them report consistent values.

I Congratulations, you now control time.
I That’s all we need to do—now how do we do it?

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

The main idea

How to build a time machine

I Need to control time as visible to app.
I Tons of possible time sources:

I Direct: GetTickCount(), QueryPerformanceCounter() etc.
I Indirect: Sleep(), WaitForSingleObject() etc.
I Event-based: timeSetEvent(), SetTimer()
I Sound: Current play position (emulate sound card!)
I CPU: RDTSC (hard to do; kkapture ignores this)

I Intercept them all, make them report consistent values.
I Congratulations, you now control time.

I That’s all we need to do—now how do we do it?

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Intercepting API calls
I If we had the source code to the demo, this would be easy.
I Link with a library that replaces system calls:

BOOL SwapBuffers(HDC hdc) {
grabCurrentFrame();
return Real_SwapBuffers(hdc);

}

DWORD GetTickCount(void) {
return start + currentFrame * msPerFrame;

}

and so on.
I But we don’t, so we have to do this using the binary only.
I On Linux, there’s LD_PRELOAD, but this is Windows, so we have to

do it ourselves.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Binary Instrumentation

I Just patch the target program.
I Calls are hard to find:

I Just search for matching byte sequence and change code?
I What if it’s a false positive?

I Different opcodes: CALL, JMP (short and near) etc.
I Indirect calls, jump tables, . . .
I Complete program flow analysis?!

I ⇒ Patch the destination, not the call site.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Binary Instrumentation (2)

SwapBuffers:
push ebp
mov ebp, esp
...
ret

RealSwapBuffers:
push ebp
mov ebp, esp
...
jmp SwapBuffers+5

MySwapBuffers:
...
jmp RealSwapBuffers

Interception:
1. Copy first few opcodes of target

function to “trampoline” function.
2. Write hook function.
3. Overwrite start of original function

with jump to hook function.
4. Hook can continue real function

via “trampoline”.
kkapture uses a library (Detours) for
this.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Binary Instrumentation (2)

SwapBuffers:
push ebp
mov ebp, esp
...
ret

RealSwapBuffers:
push ebp
mov ebp, esp
...
jmp SwapBuffers+5

MySwapBuffers:
...
jmp RealSwapBuffers

Interception:
1. Copy first few opcodes of target

function to “trampoline” function.
2. Write hook function.
3. Overwrite start of original function

with jump to hook function.
4. Hook can continue real function

via “trampoline”.
kkapture uses a library (Detours) for
this.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Binary Instrumentation (2)

SwapBuffers:
push ebp
mov ebp, esp
...
ret

RealSwapBuffers:
push ebp
mov ebp, esp
...
jmp SwapBuffers+5

MySwapBuffers:
...

jmp RealSwapBuffers

Interception:
1. Copy first few opcodes of target

function to “trampoline” function.
2. Write hook function.
3. Overwrite start of original function

with jump to hook function.
4. Hook can continue real function

via “trampoline”.
kkapture uses a library (Detours) for
this.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Binary Instrumentation (2)

SwapBuffers:
jmp MySwapBuffers
...
...
ret

RealSwapBuffers:
push ebp
mov ebp, esp
...
jmp SwapBuffers+5

MySwapBuffers:
...

jmp RealSwapBuffers

Interception:
1. Copy first few opcodes of target

function to “trampoline” function.
2. Write hook function.
3. Overwrite start of original function

with jump to hook function.
4. Hook can continue real function

via “trampoline”.
kkapture uses a library (Detours) for
this.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Binary Instrumentation (2)

SwapBuffers:
jmp MySwapBuffers
...
...
ret

RealSwapBuffers:
push ebp
mov ebp, esp
...
jmp SwapBuffers+5

MySwapBuffers:
...
jmp RealSwapBuffers

Interception:
1. Copy first few opcodes of target

function to “trampoline” function.
2. Write hook function.
3. Overwrite start of original function

with jump to hook function.
4. Hook can continue real function

via “trampoline”.
kkapture uses a library (Detours) for
this.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Intercepting API calls

Interception odds & ends

I Important: You can only call/jump to functions in the address
space of your target process.

I ⇒ Need to get the code in there somehow.
I Process:

1. Start target process as suspended (i.e. not running).
2. Allocate some memory in target code, put our init code there.
3. Detour startup code (just like you would any other function).
4. Init code loads kkapturedll.dll (contains all our code).
5. kkapturedll startup code sets up interception of everything.

I For virtual functions (e.g. COM interfaces): Actual address of
function is in virtual function table (a per-class jump table), just
get address to patch from there.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Video encoders

Video encoders
I Relatively simple interface:

class VideoEncoder {
public:
virtual ~VideoEncoder();

virtual void SetSize(...);
virtual void WriteFrame(...);

virtual void SetAudioFormat(...);
virtual void GetAudioFormat(...);
virtual void WriteAudioFrame(...);

};

I Global VideoEncoder* encoder is pointer to encoder to use.

I Actual implementations: boring (and/or tedious, e.g. DShow).
I Moving on. . .

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Video encoders

Video encoders
I Relatively simple interface:

class VideoEncoder {
public:
virtual ~VideoEncoder();

virtual void SetSize(...);
virtual void WriteFrame(...);

virtual void SetAudioFormat(...);
virtual void GetAudioFormat(...);
virtual void WriteAudioFrame(...);

};

I Global VideoEncoder* encoder is pointer to encoder to use.
I Actual implementations: boring (and/or tedious, e.g. DShow).
I Moving on. . .

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Video APIs

Video APIs (1)

I Example here: OpenGL (others are similar).
I Basic flow as outlined above, need to intercept:

I ChangeDisplaySettingsEx (video mode changes).
I wglCreateContext and variants.
I wglMakeCurrent
I SwapBuffers and variants.

I Note: ChangeDisplaySettings calls Ex variant internally, so only
intercept Ex!

I . . . Redirection affects all code running in target process,
including System DLLs – so careful, there can be side effects!

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Video APIs

Video APIs (2)

I Why track rendering contexts?
I Users call SwapBuffers with HDC, but need to know which

rendering context belongs to that DC.
I Make it active if it’s not already.

I SwapBuffers in detail:
I Grab actual frame data (via glReadPixels).
I Encode it: encoder->WriteFrame(captureData);
I Mark frame as completed: nextFrame();

I Other APIs work similarly.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Video APIs

Video APIs (2)

I Why track rendering contexts?
I Users call SwapBuffers with HDC, but need to know which

rendering context belongs to that DC.
I Make it active if it’s not already.

I SwapBuffers in detail:
I Grab actual frame data (via glReadPixels).
I Encode it: encoder->WriteFrame(captureData);
I Mark frame as completed: nextFrame();

I Other APIs work similarly.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Video APIs

Video APIs (2)

I Why track rendering contexts?
I Users call SwapBuffers with HDC, but need to know which

rendering context belongs to that DC.
I Make it active if it’s not already.

I SwapBuffers in detail:
I Grab actual frame data (via glReadPixels).
I Encode it: encoder->WriteFrame(captureData);
I Mark frame as completed: nextFrame();

I Other APIs work similarly.

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Audio

Almost the end. . .

Questions?

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour



Introduction Basic principles kkapture piece by piece

Audio

Thank you!

ryg@theprodukkt.com
http://www.farbrausch.de/~fg/kkapture

Some links

Detours http://research.microsoft.com/sn/detours
HuffYUV just Google it :)
LagArith http://lags.leetcode.net/codec.html
VirtualDub http://www.virtualdub.org
x264 http://x264.nl

Fabian ‘ryg’ Giesen Farbrausch

.kkapture: Guided tour

http://www.farbrausch.de/~fg/kkapture
http://research.microsoft.com/sn/detours
http://lags.leetcode.net/codec.html
http://www.virtualdub.org
http://x264.nl

	Introduction
	Basic principles
	The main idea
	Intercepting API calls

	kkapture piece by piece
	Video encoders
	Video APIs
	Audio


